

This document is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation
programme under agreement No 101016834. The content of this document reflects only the author's view and the European
Commission is not responsible for any use that may be made of the information it contains.
The document is the property of the HosmartAI consortium and shall not be distributed or reproduced without the approval
of the HosmartAI Project Coordination Team. Find us at www.hosmartai.eu.

Project Acronym: HosmartAI

Grant Agreement number: 101016834 (H2020-DT-2020-1 – Innovation Action)

Project Full Title: Hospital Smart development based on AI

DELIVERABLE

D4.3– Platform Architecture Design and Open APIs –
Final version

Dissemination level: PU -Public

Type of deliverable: R -Report

Contractual date of delivery: 31 January 2024

Deliverable leader: ITCL

Status - version, date: Final – v1.0, 2024-01-31

Keywords: Platform architecture, Open APIs

This project has received
funding from the European
Union’s Horizon 2020
research and innovation
programme under grant
agreement No 101016834

http://www.hosmartai.eu/

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 2

Executive Summary
This document presents the final version of the HosmartAI Platform Architecture and Open

APIs. The second version of the HosmartAI architecture from D4.2 are analysed, identifying

all the possible changes on the implementation, communication between pilots or internal

elements, and transforming the new requirements into elements to be added to the new

version of the architecture.

Also, data inputs and outputs for each pilot are analysed and a common API is updated to

standardize the flow of information between the pilots and the platform. This part of the

project is focused on the identification of all the key components of the platform and how the

interconnection is made.

In turn, the most important part of this document is the final specification of the OpenAPIs,

where they have been implemented in the parts of the platform or pilots that were needed.

In this way, it leaves a useful tool to be able to access the methods of use of a given tool.

Together, the OpenAPIs as standard communication elements, and the components

described in previous deliverables, a complete, functional platform is achieved, with all the

necessary elements to perform the proposed functionality within the framework of the

project.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 3

Deliverable leader: Daniel Lozano (ITCL)

Contributors: Daniel Lozano (ITCL)

Reviewers:
Angelo Consoli, Luca Gilardi (EXYS)
Robert Hofsink (PHILIPS)

Approved by: Athanasios Poulakidas, Anastasia Panitsa (INTRA)

Document History

Version Date Contributor(s) Description

0.1 2023-04-03 Daniel Lozano (ITCL) Document creation

0.2 2023-06-15 Daniel Lozano (ITCL) Include OpenAPI P2 & P6

0.3 2023-07-28 Daniel Lozano (ITCL) Include OpenAPI Doc Registry

0.4 2023-10-02 Daniel Lozano (ITCL) Include OpenAPI UM

0.5 2024-01-08 Daniel Lozano (ITCL) Final details and completion

0.5.1 2024-01-22 Angelo Consoli (EXYS) Added a section (4.2.2) about Security
Events Logging API

0.6 2024-01-24 Daniel Lozano (ITCL) Review fixes

1.0 2024-01-24 A. Poulakidas, A. Panitsa
(INTRA)

Final version for submission after QA

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 4

Table of Contents
Executive Summary .. 2

Table of Contents ... 4

List of Figures ... 5

List of Tables .. 6

Definitions, Acronyms and Abbreviations ... 7

 Introduction ... 8

1.1 Project Information ... 8

1.2 Document Scope ... 10

1.3 Document Structure .. 10

 OpenAPIs development ... 11

2.1.1 How to generate an OpenAPI .. 11

2.1.2 How to edit an OpenAPI .. 24

 OpenAPI Specification .. 26

3.1.1 HosmartAI Planner ... 26

3.1.2 Method Explanation .. 28

3.1.3 Schemas ... 30

3.2 HosmartAI User Management for Pilot 6.. 31

3.2.1 Method Explanation .. 32

3.2.2 Schemas ... 36

3.2.3 Complementary OpenAPIs ... 38

3.3 HosmartAI Service Registry ... 41

3.3.1 Method Explanation .. 42

3.3.2 Schemas ... 44

3.4 HosmartAI Chatbot .. 46

3.4.1 Method Explanation .. 46

3.4.2 Schemas ... 48

 Updated HosmartAI Architecture Design .. 50

4.1 Previous version .. 50

4.2 New elements ... 50

4.2.1 Graphene ... 50

4.2.2 Security Events Logging API ... 52

4.3 Updated elements ... 52

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 5

4.3.1 Service Registry API .. 52

4.4 Deleted Elements .. 53

4.4.1 Acumos ... 54

4.5 New version ... 55

 Conclusion .. 57

List of Figures
Figure 1: Tool installation from IDE. .. 12

Figure 2: Example of safrs code. .. 13

Figure 3: Safrs autogenerated Swagger. .. 14

Figure 4: Safrs Swagger call example. .. 15

Figure 5: Safrs description swagger example. ... 16

Figure 6: Nelmio api-doc-bundle installation. ... 17

Figure 7: Nelmio api doc yaml. .. 17

Figure 8: bundles.php nelmioApiDocBundle. .. 18

Figure 9: Example code. ... 18

Figure 10: Swagger interface for NelmioApiDocBundle. ... 19

Figure 11: OpenAPI source code for NelmioApiDocBundle. ... 19

Figure 12: Swagger maven plugin main documentation web. .. 21

Figure 13: Swagger endpoint in drf-yasg. .. 22

Figure 14: HAPI swagger view. ... 23

Figure 15: Swagger endpoint details for the ‘account’ object in hapi-swagger. 23

Figure 16: Swagger maven plugin API call example. ... 24

Figure 17: OpenAPI source code. ... 25

Figure 18: Planner swagger. ... 26

Figure 19: Jenkins. .. 27

Figure 20: Jenkins pipeline. .. 28

Figure 21: Schema for planner. .. 30

Figure 22: Swagger for Pilot 6. ... 31

Figure 23: Jenkins pipeline in Pilot 6. ... 32

Figure 24: Schema for Patient.. 37

Figure 25: Schema for sensors. .. 38

Figure 26: Postman of activities. .. 39

Figure 27: Postman of contents. .. 40

Figure 28: Postman of workshops. .. 41

Figure 29: Swagger for service registry. ... 42

Figure 30: Schema for services. ... 45

Figure 31: Swagger for chatbot. ... 46

Figure 32: Old architecture diagram. ... 50

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 6

Figure 33: Graphene functionality. .. 51

Figure 34: Sample Request. ... 52

Figure 35: New architecture diagram. ... 55

List of Tables
Table 1: The HosmartAI consortium. ... 9

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 7

Definitions, Acronyms and Abbreviations

Acronym/
Abbreviation

Title

API Application Programming Interface

DoA Description of Action

EHR Electronic Health Record

HHub HosmartAI Hub

HL7 Health Level 7

HL-FHIR Health Level 7 – Fast Healthcare Interoperability Resources

KPI Key Performance Indicator

RAF Reference Architecture Framework

SME Subject Matter Expert

WP Work Package

Term Definition

Consortium Group of beneficiaries that have signed the Consortium Agreement
and the Grant Agreement (either directly as Coordinator or
by accession through the Form A).

Consortium
Agreement

Contractual document signed by all the beneficiaries (and not the EC),
explaining how the Consortium is managed and works together.

Deliverable
Leader

Responsible for ensuring that the content of the deliverable meets the
required expectations, both from a contractual point of view and in terms
of usage within the project. Is also responsible for ensuring that the
deliverable follows the deliverable process and is delivered on time.

Description of
Action

Annex 1 to the Grant Agreement. It contains information on the work
packages, deliverables, milestones, resources and costs of the beneficiaries,
as well as a text with a detailed description of the action. The DoA is made
of Part A (structured data collected in web forms and workplan tables) and
Part B (text document describing the action elements).

Dissemination EC term for communication of information to a wide audience.

Grant
Agreement

Contractual document which defines the contractual scope of the
HosmartAI project. It is signed between the EC and the beneficiaries.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 8

 Introduction

1.1 Project Information

 The HosmartAI vision is a strong, efficient, sustainable and resilient European

Healthcare system benefiting from the capacities to generate impact of the

technology European Stakeholders (SMEs, Research centres, Digital Hubs and

Universities).

 The HosmartAI mission is to guarantee the integration of Digital and Robot

technologies in new Healthcare environments and the possibility to analyse

their benefits by providing an environment where digital health care tool

providers will be able to design and develop AI solutions as well as a space for

the instantiation and deployment of AI solutions.

HosmartAI will create a common open

Integration Platform with the

necessary tools to facilitate and

measure the benefits of integrating

digital technologies (robotics and AI) in

the healthcare system.

A central hub will offer multifaceted

lasting functionalities (Marketplace,

Co-creation space, Benchmarking) to

healthcare stakeholders, combined

with a collection of methods, tools and solutions to integrate and deploy AI-enabled solutions.

The Benchmarking tool will promote the adoption in new settings, while enabling a meeting

place for technology providers and end-users.

Eight Large-Scale Pilots will implement and evaluate improvements in medical diagnosis,

surgical interventions, prevention and treatment of diseases, and support for rehabilitation

and long-term care in several Hospital and care settings. The project will target different

medical aspects or manifestations such as Cancer (Pilot #1, #2 and #8); Gastrointestinal (GI)

disorders (Pilot #1); Cardiovascular diseases (Pilot #1, #4, #5 and #7); Thoracic Disorders (Pilot

#5); Neurological diseases (Pilot #3); Elderly Care and Neuropsychological Rehabilitation (Pilot

#6); Fetal Growth Restriction (FGR) and Prematurity (Pilot #1).

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 9

To ensure a user-centred

approach, harmonization in

the process (e.g., regarding

ethical aspects,

standardization, and

robustness both from a

technical and social and

healthcare perspective), the

living lab methodology will be employed. HosmartAI will identify the appropriate instruments

(KPI) that measure efficiency without undermining access or quality of care. Liaison and co-

operation activities with relevant stakeholders and open calls will enable ecosystem building

and industrial clustering.

HosmartAI brings together a consortium of leading organizations (3 large enterprises, 8 SMEs,

5 hospitals, 4 universities, 2 research centres and 2 associations – see Table 1) along with

several more committed organizations (Letters of Support provided).

Table 1: The HosmartAI consortium.

Number1 Name Short name
1 (CO) INTRASOFT INTERNATIONAL SA INTRA

1.1 (TP) INTRASOFT INTERNATIONAL SA INTRA-LU

2 PHILIPS MEDICAL SYSTEMS NEDERLAND BV PHILIPS

3 VIMAR SPA VIMAR

4 GREEN COMMUNICATIONS SAS GC

5 TELEMATIC MEDICAL APPLICATIONS EMPORIA KAI ANAPTIXI
PROIONTON TILIATRIKIS MONOPROSOPIKI ETAIRIA
PERIORISMENIS EYTHINIS

TMA

6 ECLEXYS SAGL EXYS

7 F6S NETWORK IRELAND LIMITED F6S

7.1 (TP) F6S NETWORK LIMITED F6S-UK

8 PHARMECONS EASY ACCESS LTD PhE

9 TERAGLOBUS LATVIA SIA TGLV

10 NINETY ONE GMBH 91

11 EIT HEALTH GERMANY GMBH EIT

12 UNIVERZITETNI KLINICNI CENTER MARIBOR UKCM

13 SAN CAMILLO IRCCS SRL IRCCS

14 SERVICIO MADRILENO DE SALUD SERMAS

14.1 (TP) FUNDACION PARA LA INVESTIGACION BIOMEDICA DEL
HOSPITAL UNIVERSITARIO LA PAZ

FIBHULP

15 CENTRE HOSPITALIER UNIVERSITAIRE DE LIEGE CHUL

16 PANEPISTIMIAKO GENIKO NOSOKOMEIO THESSALONIKIS
AXEPA

AHEPA

17 VRIJE UNIVERSITEIT BRUSSEL VUB

18 ARISTOTELIO PANEPISTIMIO THESSALONIKIS AUTH

19 EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH ETHZ

20 UNIVERZA V MARIBORU UM

1 CO: Coordinator. TP: linked third party.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 10

Number1 Name Short name
21 INSTITUTO TECNOLÓGICO DE CASTILLA Y LEON ITCL

22 FUNDACION INTRAS INTRAS

23 ASSOCIATION EUROPEAN FEDERATION FORMEDICAL
INFORMATICS

EFMI

24 FEDERATION EUROPEENNE DES HOPITAUX ET DES SOINS DE
SANTE

HOPE

1.2 Document Scope

This deliverable has as main objective to describe the last iteration of the architecture relative

to the platform, as well as the changes that it has undergone regarding the second version

described in the terrier deliverable.

All these changes will be described in detail in this document to understand why they have

been made and what new needs they are covering.

In turn, other of the main elements that you want to detail in this deliverable, is the

communication between the elements of the architecture through a specification OpenAPI

public, that is known by all to be able to be used from any elements of the platform, either

internal or external.

1.3 Document Structure

This document is comprised of the following chapters:

Chapter 1 presents an introduction to the project and the document.

Chapter 2 specifies the OpenAPI development and tools.

Chapter 3 explains and describes the final version of OpenAPI specification.

Chapter 4 explains and describes the final version of the HosmartAI architecture.

Chapter 5 provides some concluding remarks.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 11

 OpenAPIs development
To establish a stable and robust final specification, throughout the development of this task,

different tools have been made available to the main partners involved in the development

of parts of the architecture to generate a specification understandable to others.

As a result of this work, the main tool with which the whole specification has been elaborated

is presented below, providing the clarity needed in a project as complex as the one we are

dealing with.

To choose the main tool, several factors have been considered, such as the ease of use to

generate the information from the code, the accessibility of the tool at an economic level, as

well as the results and efficiency when working with the tool.

2.1.1 How to generate an OpenAPI

2.1.1.1 Swashbuckle (NET Core)

This tool consists of a swagger tooling for APIs built with ASP.NET Core. Generates API

documentation, including a UI to explore and test operations, directly from the routes,

controllers, and models.

In addition to its Swagger 2.0 and OpenAPI 3.0 generator, Swashbuckle also provides an

embedded version of the swagger-UI that's powered by the generated Swagger JSON. This

means that can complement your API with living documentation that's always in sync with

the latest code. It requires minimal coding and maintenance, allowing you to focus on building

an awesome API.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 12

Figure 1: Tool installation from IDE.

2.1.1.2 safrs (Python)

SAFRS is a Python library that exposes a database defined with the framework SQLAlchemy

as a JSON:API web service and generates the corresponding OpenAPI specification for a

swagger service.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 13

Figure 2: Example of safrs code.

By default, it generates GET (retrieve an object), POST (Create an object), DELETE (Remove an

object) and PATCH (Update an object) methods for a selected object and the objects it’s

related to.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 14

Figure 3: Safrs autogenerated Swagger.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 15

Figure 4: Safrs Swagger call example.

OpenAPI descriptions can be added by using comments to classes and functions, by adding a

triple double-quote comment below the class or function definition.

The “description” comment describes the parameter, and the “args” comment can give more

information about the field's names, types, and examples of use.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 16

For example:

def send_mail(self, **args):

"""

 description: Send an email

 args:

 email:

 type: string

 example: test email

"""

Figure 5: Safrs description swagger example.

2.1.1.3 NelmioApiDocBundle (PHP-symfony)

NelmioApiDocBundle is a framework that adds OpenAPI and swagger generation to PHP-

Symfony.

To install it, Symfony and PHP must be installed and configured. Then, run the following

command in the terminal:

composer require nelmio/api-doc-bundle

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 17

Figure 6: Nelmio api-doc-bundle installation.

The project needs the file: nelmio_api_doc.yaml, where the main documentation for the API

can be added, and a regular expression for only showing paths to API URLs in the OpenAPI.

Figure 7: Nelmio api doc yaml.

In the file bundles.php, there must be a line including nelmio \ apiDocBundle \

NelbioApiDocBundle.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 18

Figure 8: bundles.php nelmioApiDocBundle.

And the last thing to configure the OpenAPI must be a file “nalmio_api_doc.yaml”, in the

routes folder, with the path for showing the swagger interface.

Figure 9: Example code.

By doing this, the /api/doc URL can be accessed, with the swagger interface, and the

/api/doc.json can be accessed with the source code for the OpenAPI.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 19

Figure 10: Swagger interface for NelmioApiDocBundle.

Figure 11: OpenAPI source code for NelmioApiDocBundle.

2.1.1.4 Swagger Maven Plugin

Swagger Maven Plugin is a plugin for java projects using maven to generate swagger API

documentation while building with maven.

This plugin does not serve the online documentation after building but only generates the

spec docs to be used later.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 20

For using it, it’s only necessary to add it in the plugins block by writing the plugin definition:

<plugin>
<groupId>com.github.kongchen</groupId>
<artifactId>swagger-maven-plugin</artifactId>
<version>${swagger-maven-plugin-version}</version>
<configuration>
<apiSources>
<apiSource>
...
</apiSource>
</apiSources>
</configuration>
<executions>
<execution>
<phase>compile</phase>
<goals>
<goal>generate</goal>
</goals>
</execution>
</executions>
</plugin>

And edit the pom.xml file to add the dependency:

<dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.3.1</version>
</dependency>

Installation is complete at this point and just run the mvn compile command to generate the

swagger.

As this plugin does not serve the web with generated documentation, it is necessary to expose

it somehow. Nginx or Apache can be used, for example. The following command allows to get

it up with docker:

docker run -it --rm -d -p 8080:80 --name web -v /home/adrian/swagger-maven-

example/generated/:/usr/share/nginx/html nginx

Exposed documentation would be like this:

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 21

Figure 12: Swagger maven plugin main documentation web.

2.1.1.5 drf-yasg (Yet another Swagger generator)

It’s a real swagger/openAPI specifications generator for Django REST APIs. Provides the

option to choose between swagger-UI and redoc or both for documentation generation but

it’s only working with OpenAPI 2.0 and has no support for OpenAPI 3.0 and it’s unplanned to

give support for 3.0 in short term.

This tool is installed using python-pip and requires python to be installed in one of the

“3.6,3.7,3.8,3.9” versions. Once installed, only need to run the following command to install

drf-yasg:

pip install -U drf-yasg

Once installed, we should add it to the requirements.txt file by adding the following two lines:

djangorestframework==3.11
drf-yasg==1.20

The next step is to add the following to the INSTALLED_APPS variable in settings.py:

INSTALLED_APPS=[

...

'rest_framework',

'django.contrib.staticfiles',

'drf_yasg',

...
]

In the urls.py file, the following lines must be added to enable the WebUI for swagger. In

urlpatterns, we added two different views, redoc and swagger to make them available as

examples. Two exposed endpoints show a JSON and a YAML representation of the API

specification.

schema_view = get_schema_view(
 openapi.Info(

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 22

 title="Snippets API",
 default_version='v1',
 description="Test description",
 terms_of_service="https://www.google.com/policies/terms/",
 contact=openapi.Contact(email="contact@snippets.local"),
 license=openapi.License(name="BSD License"),
),
 public=True,
 permission_classes=[permissions.AllowAny],
)

urlpatterns = [
 re_path(r'^swagger(?P<format>\.json|\.yaml)$',
schema_view.without_ui(cache_timeout=0), name='schema-json'),
 re_path(r'^swagger/$', schema_view.with_ui('swagger', cache_timeout=0),
name='schema-swagger-ui'),
 re_path(r'^redoc/$', schema_view.with_ui('redoc', cache_timeout=0),
name='schema-redoc'),
 ...
]

With these changes, the API is exposed in /swagger/ as shown:

Figure 13: Swagger endpoint in drf-yasg.

2.1.1.6 HAPI swagger

OpenAPI generator plugin for HAPI to self-document the API interface for JavaScript objects.

nodeJS or npm must be installed to install this tool. Once installed, only need to run the

following command to install hapi-swagger:

 npm install hapi-swagger --save

 npx install-peerdeps hapi-swagger

mailto:contact=openapi.Contact(email=

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 23

After installation, modules must be imported into the JavaScript code and endpoints tagged

by tags: ['api'], in the options section of the code.

After running the application again, API documentation is generated in /documentation/

route.

Figure 14: HAPI swagger view.

Figure 15: Swagger endpoint details for the ‘account’ object in hapi-swagger.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 24

Figure 16: Swagger maven plugin API call example.

2.1.2 How to edit an OpenAPI

With Swagger editor you can perform a visual check of the elements that make up the API. At

the same time, it allows you to identify code errors, indicating the line where the error is

located. This editor requires specific knowledge of the OpenAPI standard.

This tool also has a wide range of possibilities in the field of testing. It allows the server part

to be generated to make the calls defined in the API. At the same time, we can generate a

client from a wide variety of languages to include it in the tool being developed.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 25

Figure 17: OpenAPI source code.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 26

 OpenAPI Specification
The following is the final OpenAPIs specification of the main elements that require the use of

these tools to communicate.

After the work done in the previous versions analysing the tools, this deliverable shows in a

clear way how they have been integrated and what is their final specification.

3.1.1 HosmartAI Planner
For this task, a Web Services (WS) system has been developed that allows authentication in

the system and the execution of Get and POST requests, among others. The following image

shows the Swagger system, which enables users and technical personnel to interact with the

data exchange service securely http://116.202.187.140:60000. It is worth noting that the

authentication system is based on token authentication, which is an HTTP authentication

scheme where security relies on the use of encrypted text strings, typically generated by the

server. These strings (tokens) identify the bearer of the message by including them in all

resource requests made to the server.

Figure 18: Planner swagger.

In this case, the data that needs to be exchanged includes patient authentication and APIs

with other elements of the pilot program, as well as information related to medical

appointments and changes made by patients.

http://116.202.187.140:60000/

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 27

The system is deployed on the general project platform, making it available to all partners.

The deployment process can be observed through Jenkins

(https://hhub.hosmartai.eu/jenkins/).

Figure 19: Jenkins.

Jenkins is a server for continuous integration. This tool is used to build and test software

projects continuously, making it easier for developers to integrate changes into a project

and deliver new versions to users. As shown in the following image, there is a history of

deployed versions and changes, the time elapsed since the last deployed version, and

various logs that help identify possible system failures.

https://hhub.hosmartai.eu/jenkins/

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 28

Figure 20: Jenkins pipeline.

3.1.2 Method Explanation
This section describes the breakdown of the full functionality of this pilot. All functionality is

achieved through the methods specified in the OpenAPI. They are detailed below.

Account

1. POST /api/Account/authenticate

• Detailed Description: Initiates the authentication process for a user. Users

provide necessary credentials, and upon successful authentication, they gain

access to protected resources or services.

• Example

2. POST /api/Account/logout

• Detailed Description: Logs out the currently authenticated user. This

endpoint terminates the user's session, ensuring that subsequent requests

require re-authentication for access.

• Example

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 29

Planning

3. GET /api/Planning/appointments

• Detailed Description: Retrieves a list of appointments filtered by date. Users

can query the API to obtain appointments scheduled for a specific date,

facilitating efficient planning and organization.

• Example

4. GET /api/Planning/slots

• Detailed Description: Retrieves a list of available time slots for appointments.

This endpoint allows users to identify and choose from open slots,

streamlining the appointment scheduling process.

• Example

5. POST /api/Planning/change-appointment

• Detailed Description: Facilitates the modification of appointment dates.

Users can submit a request to change the date of an existing appointment

through this endpoint, providing flexibility in managing scheduled events.

• Example

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 30

3.1.3 Schemas
A schema defines how data should be organised and what type of data can be included. It

provides a formal description of the data structure so that applications consuming the API can

understand and process information consistently.

Figure 21: Schema for planner.

As can be seen in the schema, the data have all the necessary fields for their identification

and organization of the system.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 31

3.2 HosmartAI User Management for Pilot 6

For this task, a Web Services (WS) system has been developed that allows authentication in

the system and the execution of GET, PUT and POST requests, among others. The following

image shows the Swagger system, which enables users and technical personnel to interact

with the data exchange service securely (http://116.202.187.140:60003).

In Swagger, you can see a description and objective of the different publicly deployed

methods. However, there are other private methods between the Web interface and the Web

Service that are not available on the Swagger platform.

It is worth noting that the authentication system is based on token authentication, which is

an HTTP authentication scheme where security relies on the use of encrypted text strings,

typically generated by the server. These strings (tokens) identify the bearer of the message

by including them in all resource requests made to the server.

Figure 22: Swagger for Pilot 6.

http://116.202.187.140:60003/

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 32

The deployment system used has been Jenkins, which allows us to view logs and maintain a

historical record of the different executions performed. For this purpose, Jenkins is connected

to the code repository where the various codes with functionalities have been updated.

Figure 23: Jenkins pipeline in Pilot 6.

3.2.1 Method Explanation
All functionality is achieved through the methods specified in the OpenAPI. They are

detailed below.

Account

1. POST /api/Account/authenticate

• Detailed Description: Initiates the authentication process for a user, typically

requiring credentials. Upon successful authentication, it provides access to

protected resources or services.

• Example

2. POST /api/Account/validate

• Detailed Description: Validates account information, ensuring the provided

data meets the required criteria. This endpoint may be used for verifying user

details or ensuring the integrity of account-related information.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 33

• Example

Personas

3. GET /api/Personas/pacientes-simple/{idexterno}

• Detailed Description: Retrieves detailed information about a patient

associated with the provided external ID. This can include patient

demographics, medical history, and other relevant data.

• Example

4. GET /api/Personas/pacientes-simple

• Detailed Description: Retrieves a comprehensive list of all patients. The

response would typically include details such as patient names, IDs, and other

relevant information.

• Example

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 34

5. POST /api/Personas/situaciones/pacientes

• Detailed Description: Retrieves a list of patients based on specified situations

(null, eliminado, modificado, nuevo). If an empty array is passed, the result is

equivalent to the call with values (eliminado, modificado, nuevo). This allows

filtering patients based on their current status or situation.

• Example

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 35

6. POST /api/Personas/situaciones/registradas/pacientes

• Detailed Description: Modifies the situation of users related to the provided

external IDs. By passing external IDs to the call, it sets the user situation value

to the default (null) for users associated with those external IDs.

• Example

Sensors

7. GET /api/Sensores

• Detailed Description: Retrieves a comprehensive list of all sensors. The

response would typically include details such as sensor names, IDs, and other

relevant information.

• Example

8. PUT /api/Sensores/actualizar/{idexterno}

• Detailed Description: Updates the sensors of a patient based on the provided

external ID and sensor data. This allows for real-time adjustments or additions

to the sensor information associated with a specific patient.

• Example

9. POST /api/Sensores/actualizar/{idsensor}

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 36

• Detailed Description: Modifies sensor values by passing the sensor ID and new

values. This endpoint is useful for updating or calibrating sensor readings for a

specific sensor.

• Example

10. GET /api/Sensores/sensor-id/{id}

• Detailed Description: Retrieves the external ID of the patient associated with

the specified sensor. This can be valuable for cross-referencing sensor data

with patient information.

• Example

11. GET /api/Sensores/persona/{idexterno}

• Detailed Description: Retrieves sensors associated with a user based on the

provided external ID. This endpoint allows for obtaining a list of sensors related

to a specific user, enabling a more personalized sensor data retrieval.

• Example

3.2.2 Schemas
A schema defines how data should be organized and what type of data can be included. It

provides a formal description of the data structure so that applications consuming the API can

understand and process information consistently.

In this case, we differentiated two important actors in this part of the system, which are the

patients and the sensors associated with them, that collect information and will be associated

with each patient.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 37

Figure 24: Schema for Patient.

Here we can see all the patient related fields, where the necessary ones have been

programmed to correctly identify all users of the pilot.

Here it is also seen that each patient has its associated sensors, and the information is robust

and compact and with all the associations correctly performed.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 38

Figure 25: Schema for sensors.

And in the same way as with patients, sensors are also discharged, where they are seen to be

associated with each patient so that the recorded information is saved automatically.

3.2.3 Complementary OpenAPIs
Complementary APIs that do not have a swagger but have been used for the communication

of certain parts of the pilot are described below.

Content manager (APE)

This API is mainly used to feed the application with the contents that the patients will see,

as well as the workshops that the robot performs, the movements it must make and the

activities available within the pilot's environment.

For this purpose, three endpoints have been developed that serve the necessary content to

be displayed in the applications. Each of them displays different information, arranged in

such a way that it is easy to handle in the code layer and can therefore be presented in the

interface in a way that is easy for the user to handle.

The following are these 3 types of endpoints.

3.2.3.1 Activities

This endpoint has not been generated using swagger, due to its programming language and

the needs of the project, but it is included in this section because of its importance for the

final application of the pilot that has been developed.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 39

Figure 26: Postman of activities.

As can be seen from the figure, this endpoint serves the information related to the activities.

In this way, the category to which each activity belongs, difficulty, identifier, and title, among

other properties, are indicated. In this way, the information is presented correctly in the

applications that require it.

3.2.3.2 Contents

As with the previous endpoint, this one has not been generated using swagger either, due to

its programming language and the needs of the project, but it is included in this section due

to its importance for the final application of the pilot that has been developed.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 40

Figure 27: Postman of contents.

This endpoint focuses its functionality on serving activity-specific multimedia content to be

shown to users. These are links to videos, images, as well as general information, news, and

other content of interest to perform the exercises proposed for the user in this pilot.

3.2.3.3 Workshops

As with the previous endpoint, this one has not been generated using swagger either, due to

its programming language and the needs of the project, but it is included in this section due

to its importance for the final application of the pilot that has been developed.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 41

Figure 28: Postman of workshops.

Finally, this endpoint serves the workshops that will be executed by the Pepper robot through

the application developed for this pilot. In this way, the sentences that the robot has to say

are specified, as well as the movements that it has to perform at each moment.

3.3 HosmartAI Service Registry

Through this API, the necessary services are registered and included in the HosmartAI

platform. Although it is a simple API with few methods, it fulfils its function and ensures that

all services are registered correctly.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 42

In the swagger shown below, the published methods are shown so that any other element of

the architecture can make the corresponding calls.

Figure 29: Swagger for service registry.

This swagger can be accessed via the following link: https://hhub.hosmartai.eu/service-

registry/docs/

3.3.1 Method Explanation
It's time to break down the full functionality of this pilot. All functionality is achieved through

the methods specified in the OpenAPI. They are detailed below.

1. GET /services

• Detailed Description: This endpoint is used to retrieve the complete list of all

registered services in the system. The expected response will be a collection of

resources representing each service, with details such as name, description,

and any other relevant information. This method is useful for displaying a

summary of all available services.

• Example

2. POST /services

• Detailed Description: By using this endpoint, you can create a new service in

the system. The necessary data for creating the service is typically sent in the

request body (payload). The response will provide information about the

newly created service, such as its unique ID and any other relevant data.

• Example

https://hhub.hosmartai.eu/service-registry/docs/
https://hhub.hosmartai.eu/service-registry/docs/

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 43

3. GET /services/{service_id}

• Detailed Description: This endpoint allows you to retrieve detailed

information about a specific service identified by its unique ID (service_id). The

response will contain all available details about that service, which may include

its name, description, status, etc. This method is useful for retrieving specific

information about a particular service.

• Example

4. DELETE /services/{service_id}

• Detailed Description: By using this endpoint, you can delete a specific service

from the system based on its unique ID (service_id). After performing this

operation, the service will no longer be available in the system, and the

response may include information about the success of the operation or

relevant messages. This method is useful for removing services that are no

longer needed or have been discontinued.

• Example

5. GET /services/health/{service_id}

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 44

• Detailed Description: This endpoint is designed to retrieve the health status of

a specific service identified by its unique ID (service_id). The purpose is to

monitor the operational health and status of a particular service within the

system. The response typically includes information about the service's

availability, performance, or any relevant metrics indicating its current health.

This endpoint is crucial for systems to assess and ensure the well-being of

individual services in real-time.

• Example

3.3.2 Schemas
A schema defines how data should be organized and what type of data can be included. It

provides a formal description of the data structure so that applications consuming the API can

understand and process information consistently.

The main object in this part of the API is the service being registered. This service must

associate certain fields that have to be able to identify who registers it, for what it serves and

the terms of use among other things.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 45

Figure 30: Schema for services.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 46

3.4 HosmartAI Chatbot

In this section, the operation of the open API that manages all communication with the

Chatbot, developed by the University of Maribor, is detailed. It is mainly used in Pilot 2 and

communicates with the Android application that schedules appointments for users. This

Chatbot provides a more human-like communication interface to re-arrange a change of

appointment if the patient is unable to attend.

To do so, the application asks through this OpenAPI for the phrases to be displayed on the

interface (http://164.8.22.204:8000/webjars/swagger-

ui/index.html?url=/api/swagger&validatorUrl=).

Figure 31: Swagger for chatbot.

3.4.1 Method Explanation
It's time to break down the full functionality of this pilot. All functionality is achieved through

the methods specified in the OpenAPI. They are detailed below.

Chatbot Questionnaire Service

1. POST /Chatbot/conversationEvents/{id}

• Detailed Description: Records conversation events for user administration.

This endpoint is utilized to capture and manage events that occur during a

conversation, facilitating user administration and allowing for the tracking of

specific interactions.

• Example

http://164.8.22.204:8000/webjars/swagger-ui/index.html?url=/api/swagger&validatorUrl=
http://164.8.22.204:8000/webjars/swagger-ui/index.html?url=/api/swagger&validatorUrl=

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 47

2. POST /Chatbot/sendMessage

• Detailed Description: Webhook endpoint for user interactions, enabling

communication between the bot and the user. This endpoint handles

messages sent by users and triggers the appropriate actions or responses from

the chatbot.

• Example

3. GET /Chatbot/conversationTracker/{id}/{questionnaire_id}

• Detailed Description: Endpoint designed to track user information specific to

a questionnaire. By providing the user ID and questionnaire ID, this endpoint

retrieves information related to the user's progress or responses within the

specified questionnaire.

• Example

4. POST /Chatbot/conversationTrackerToFHIR

• Detailed Description: Endpoint for tracking user information and converting it

to FHIR (Fast Healthcare Interoperability Resources) format. This allows for

standardized representation and exchange of healthcare-related information,

enhancing interoperability.

• Example

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 48

5. GET /Chatbot/conversationPredict/{id}/{questionnaire_id}

• Detailed Description: Endpoint for predicting user information based on the

user's ID and questionnaire ID. This may involve leveraging machine learning

or predictive algorithms to anticipate user responses or behaviour within the

context of a specific questionnaire.

• Example

6. GET /Chatbot/conversationStory/{id}/{questionnaire_id}

• Detailed Description: Endpoint to retrieve the user story for a given user and

questionnaire. This can provide a narrative or chronological account of the

user's interactions and responses, offering insights into their journey through

the questionnaire.

• Example

3.4.2 Schemas
A schema defines how data should be organized and what type of data can be included. It

provides a formal description of the data structure so that applications consuming the API can

understand and process information consistently.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 49

In this OpenAPI no schemas are available as all information is sent via string type without any

concrete format.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 50

 Updated HosmartAI Architecture Design
To understand the new version of the architecture, we present below the resulting version of

D4.2 which is the previous version.

4.1 Previous version

We present the old version of the diagram, to give visibility to the changes made during this

period.

Figure 32: Old architecture diagram.

4.2 New elements

Below are the elements added to the platform, the result of the use and the needs detected

throughout the development.

4.2.1 Graphene
The project, known as Eclipse Graphene™, emerges because of the European AI4EU initiative,

funded by the European Commission between 2019 and 2021. Initially, Acumos AI was used

for artificial intelligence (AI) experiments, but over time, it forked into a new development

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 51

called AI4EU Experiments. This fork exhibits significant differences from Acumos, especially

in the management of Docker images and gRPC communication, aiming for greater flexibility

and interoperability for model providers. To enhance security and scalability, unfinished

features of Acumos were deliberately removed. As the AI4EU project concludes, there is a

plan to transform it into an open-source project with well-defined governance.

Eclipse Graphene covers an extensive market by offering reusable solutions for AI and

machine learning. Its approach is not limited to machine learning experts but is also designed

for ordinary developers to create applications with ease.

Figure 33: Graphene functionality.

In terms of its structure, Eclipse Graphene doesn't function as a centralized execution

environment but rather as a comprehensive design and distribution framework. It acts as a

launchpad for training and validating individual components and integrated solutions. Secure

distribution of results takes place through an electronic catalogue and is compatible with

various runtime environments, including those based on Kubernetes. The inclusion of

AcuCompose, a graphical tool for linking models, data translation tools, filters, and adapters,

enhances its utility. It also encourages collaboration in closed groups for specific projects and

ensures solution portability by being compatible with various hardware infrastructures.

Mechanisms for packaging, sharing, licensing, and deploying AI models as portable,

containerized microservices further solidify its functionality.

The choice of Eclipse Graphene as an Eclipse project is based on the belief in its ability to

support the adoption, innovation, and evolution of AI applications. Seeking a broader

audience and aiming to attract more developers, the project anticipates active participation

from individuals and teams involved in EU-funded projects.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 52

In legal terms, it acknowledges that Acumos is a Linux Foundation project. Ongoing

discussions with LF underscore the transition from the fork to Eclipse, emphasizing

compliance with legal rules related to trademarks. This implies the removal of all instances of

the Acumos trademark. The project prioritizes legal compliance in its evolution.

4.2.2 Security Events Logging API
For the purposes of monitoring and traceability inside each HosmartAI pilot's code base, a
custom event logging API has been built and is currently deployed in the HHUB platform.
This makes it possible to trace important events on an external system, so that in case of
application crashes or other critical situations, the history of events leading to such situation
can still be analysed.

Custom alerts based on these event logs can also be written, as to be notified as soon as a
specific combination of events happen.

The API requires the use of an API key that is provided to interested partners. The key is tied
to an "application" the partner is building, so each partner can request multiple keys if needed
(one for each application they are developing).

The following figure illustrates a sample request made to log some event:

Figure 34: Sample Request.

4.3 Updated elements

In this section we will present the elements that are maintained from one iteration to the

next, and have been updated, either in operation or implementation.

4.3.1 Service Registry API
In the dynamic and ever-evolving landscape of software development, choosing the right

backend technology has been crucial for the success of a project. In some cases, the need to

switch from an established framework like Spring Boot to Node.js has arisen. Below are

explored some reasons that motivated this transition.

1. Performance and Scalability: Node.js has gained popularity for its ability to efficiently

handle non-blocking input/output (I/O) operations. Its event-driven architecture and capacity

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 53

to manage multiple simultaneous connections proved advantageous in environments where

scalability and performance were critical.

2. Rapid Development: The use of JavaScript on both the client and server sides allowed

developers to work more cohesively across the entire application stack. This language

uniformity accelerated development and facilitated the transition between frontend and

backend.

3. Community and Ecosystem: Node.js boasted an active community and an extensive

package repository through npm. This facilitated collaboration, code reuse, and the

integration of third-party libraries, providing developers access to a wide range of tools.

4. Microservices and Event-Driven Architecture: Node.js proved compatible with

microservices and event-driven architectures. Its asynchronous nature adapted well to

building distributed systems and efficiently implementing communication between services.

5. JavaScript on Both Sides: The ability to use the same language on the frontend and backend

simplified development and reduced code complexity. This was particularly beneficial when

employing popular frontend frameworks using JavaScript, such as React, Angular, or Vue.

6. Real-Time and Real-Time Applications: Node.js excelled in real-time applications, such as

real-time chat, online games, and real-time collaboration. Its ability to handle simultaneous

connections efficiently made it a natural choice for such projects.

7. Lower Overhead: Some developers argued that Node.js had less overhead compared to

heavier frameworks like Spring Boot. This was beneficial for smaller or less complex projects,

where agility and simplicity were valued.

8. Flexibility and Adaptability: Node.js was known for its flexibility. It allowed developers to

choose and combine libraries based on the specific needs of the project, providing a more

customized approach to software development.

9. Change in Project Requirements: As project requirements evolved, there arose the need

to adopt a more event-driven or microservices-oriented approach. Node.js, with its ability to

handle these architectures efficiently, became a more natural choice in such scenarios.

Ultimately, the choice between Spring Boot and Node.js was based on specific project factors,

team skills, and long-term goals. Each technology had its strengths and weaknesses, and the

decision was grounded in a careful evaluation of the project's requirements and objectives.

4.4 Deleted Elements

 Removing an element from an architecture, whether it's in software, hardware design, or any

complex system, may become necessary for various reasons. One primary reason is the

evolving nature of project requirements. Over time, the needs of a project can change,

rendering certain components obsolete or unnecessary.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 54

Another key motivation for elimination is the pursuit of optimization and enhanced

performance. Simplifying the architecture by eliminating redundancies or non-critical

elements can significantly improve the overall efficiency of the system.

Adaptability and flexibility are critical aspects that may warrant the removal of certain

elements. Creating an architecture that is more adaptable to future changes or improvements

ensures that the system can efficiently incorporate new features or technologies.

Cost considerations also play a role in the decision to remove an element. Maintaining and

updating certain components can be resource intensive. If a component no longer provides

substantial value or its upkeep is economically prohibitive, removal becomes a viable option.

Design flaws or issues within a component can necessitate its removal to maintain the stability

and reliability of the overall system. Technological advancements may also lead to the

obsolescence of certain components, making it practical to remove them and adopt more

modern technologies.

Scalability is another factor. Some architectures are designed to be scalable, and removing

components may be necessary to facilitate the expansion or reduction of the system as

needed.

Simplification is often a desired outcome. A simpler architecture is easier to understand,

maintain, and debug. Removing unnecessary elements contributes to simplifying the

architecture, making it more manageable.

In summary, the decision to eliminate an element from an architecture should be approached

with caution, considering the potential cascading impacts on other parts of the system.

Thorough analysis and a deep understanding of the system are crucial. Additionally, following

development and design practices that facilitate adaptability and maintainability is essential

as requirements and technologies evolve.

In this way all changes made to the architecture have been made by similar elements, which

do not affect the functioning of the elements already included and are therefore transparent

to the functioning of the rest of the platform.

4.4.1 Acumos
The decision to move from Acumos to Eclipse Graphene is significantly influenced by

Graphene's distinct approach to handling AI models and its infrastructure. Unlike Acumos,

Graphene does not require to build the docker images of models internally but instead stores

the references to docker image URIs. By not storing docker images internally, Graphene

minimizes the risk associated with data breaches or unauthorized access. The security

responsibility is more distributed, with each data provider managing their own security. This

methodology aligns with our goal of maintaining a streamlined, efficient infrastructure.

Additionally, Graphene's requirement for models to support gRPC communication according

to its container specification enhances interoperability between models, a capability that was

limited under Acumos’s framework. This aspect of Graphene ensures a higher compatibility

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 55

degree for model providers, facilitating smoother integration and communication between

different components of HosmartAI.

Furthermore, Graphene's design studio supports a wider range of topologies and offers gRPC

streaming capabilities, broadening the scope of our project's functionalities. By removing

unfinished features from Acumos, like the Workbench and NIFI integration, Graphene

presents a more streamlined and focused toolset. Notably, Graphene does not allow models

to be executed internally for security and scalability reasons, a stark contrast to Acumos. This

approach minimizes security risks and enhances our project's scalability by offloading

execution responsibilities. These factors, combined, make Eclipse Graphene a more suitable

and future-proof choice for our project, ensuring that we can effectively meet current needs

while also being well-equipped to adapt to potential future developments and requirements.

4.5 New version

Figure 35: New architecture diagram.

The major changes of the architecture are highlighted through the red boxes.

The result of the great work that was carried out in an initial period of the project, identifying

the needs of the projects, the partners and the functionality that was intended to be granted,

the changes that the platform has undergone have been minor throughout the last two

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 56

iterations. These changes, as mentioned above, are the result of the use and appearance of

specific needs that have caused elements of the platform to change, be removed or appear

new.

 D4.3– Platform Architecture Design and Open

APIs – Final version
H2020 Contract No 101016834 Final – v1.0, 2024-01-31

Dissemination level: PU -Public Page 57

 Conclusion
After the work done throughout Task 4.1 and through these three deliverables that compose

it, a robust architecture has been developed that meets the established requirements of the

project.

As already seen in the second installable, and repeated in the present, the changes that have

been made have been few compared to the first version, where a significant effort was made

to identify the needs and create a robust first version.

To this end, some elements that made no sense within the architecture have been eliminated.

At the same time, others have been updated, changing the way in which they are integrated,

or the version originally used. New elements have also been added, since it has been detected

that they were missing to cover certain needs of the system.

Regarding OpenAPIs, it has had a later evolution than the platform since the development of

each pilot or element has been done as the overall development time of the project

progressed.

For this reason, the last deliverable details the way in which they have been generated as well

as the final specification of the OpenAPIs used for the communication of elements within the

project's own architecture.

	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	Definitions, Acronyms and Abbreviations
	1 Introduction
	1.1 Project Information
	1.2 Document Scope
	1.3 Document Structure

	2 OpenAPIs development
	2.1.1 How to generate an OpenAPI
	2.1.1.1 Swashbuckle (NET Core)
	2.1.1.2 safrs (Python)
	2.1.1.3 NelmioApiDocBundle (PHP-symfony)
	2.1.1.4 Swagger Maven Plugin
	2.1.1.5 drf-yasg (Yet another Swagger generator)
	2.1.1.6 HAPI swagger

	2.1.2 How to edit an OpenAPI
	With Swagger editor you can perform a visual check of the elements that make up the API. At the same time, it allows you to identify code errors, indicating the line where the error is located. This editor requires specific knowledge of the OpenAPI st...

	3 OpenAPI Specification
	3.1.1 HosmartAI Planner
	3.1.2 Method Explanation
	3.1.3 Schemas
	3.2 HosmartAI User Management for Pilot 6
	3.2.1 Method Explanation
	3.2.2 Schemas
	3.2.3 Complementary OpenAPIs
	Content manager (APE)
	3.2.3.1 Activities
	3.2.3.2 Contents
	3.2.3.3 Workshops

	3.3 HosmartAI Service Registry
	3.3.1 Method Explanation
	3.3.2 Schemas

	3.4 HosmartAI Chatbot
	3.4.1 Method Explanation
	3.4.2 Schemas

	4 Updated HosmartAI Architecture Design
	4.1 Previous version
	4.2 New elements
	4.2.1 Graphene
	4.2.2 Security Events Logging API

	4.3 Updated elements
	4.3.1 Service Registry API

	4.4 Deleted Elements
	4.4.1 Acumos

	4.5 New version

	5 Conclusion

